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We prove, by elementary measure theoretic arguments, imbedding theorems for
the Lipschitz spaces generated by the weak-L p metric. Our results hold for every
p in the range 0< p<� and in some cases extend the results known for the
L p metric. We also show that our techniques also extend to more general situa-
tions. � 1998 Academic Press

The main purpose of this paper is to establish imbedding theorems for
the spaces 4:

Lp, �(Rn) of functions in weak-L p(Rn) smooth up to the order
: (see below for the definition). Analogous results for spaces generated by
the L p metric are well known (see, e.g., [3, Sect. 6.3]); however, the weak-
L p setting seems of particular interest for an elementary treatment of this
subject. In fact our methods do not make use of Fourier transform or
approximation techniques but only of measure theoretic properties of sets.
This allows us to establish results valid for every p in the whole range
0< p<� (see [2, Chapt. 12] for some results for the case of the L p metric
with 0< p<1) and also to prove an imbedding theorem for spaces of func-
tions defined on general measure space. Moreover since weak-L p(Rn) is
larger than L p(Rn), in some situations our results extend the results known
in the classical case (see part (iii) of Theorem 1).

We begin with some definitions.
The weak-L p(Rn) space, or L p, �(Rn), consists of all measurable func-

tions f on Rn such that

& f &Lp, �=[sup
*>0

* p |[x # Rn : | f (x)|>*] |]1�p

is finite (we denote with |A| the Lebesgue measure of a set A). A detailed
exposition about these spaces can be found in [4, Chap. V].
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Let X be either the space L p, �(Rn), the space L p(Rn), or the space
C(Rn) of continuous functions on Rn endowed with the L� metric. Let
f # X. For any h # Rn and any integer k�0 the kth difference operator 2k

h

of step h is defined by

20
h f (x)= f (x),

21
h f (x)=2h f (x)= f (x+h)& f (x),

2k
h f (x)=2h[2k&1

h f (x)]= :
k

j=0

(&1)k+ j \k
j+ f (x+ jh)

and the k th modulus of smoothness of f by

|k( f, $)X= sup
|h|�$

&2k
h f &X .

Let :>0 and k=[:]+1. The generalized Lipschitz space 4:
X (Rn) consists

of all functions f # X for which

sup
$>0

|k( f, $)X

$: <+�

and a norm in 4:
X (Rn) is given by

& f &4:
X
=& f &X+sup

$>0

|k( f, $)X

$: .

When :=0 we set 40
X (Rn)=X. The Lipschitz spaces generated by func-

tions in C(Rn) will be denoted simply by 4:(Rn).
We also need the definition of the Zygmund space Lexp(Rn).
Let f be a measurable function on Rn. Its non-increasing rearrangement

f * is defined by

f *(t)=inf[* : |[x : | f (x)|>*]|�t].

Roughly speaking f * is the non-increasing function defined on [0, �) with
the same distribution as f. We also define the maximal function of f * by

f **(t)=
1
t |

t

0
f *(s) ds= sup

|E |=t

1
|E | |E

| f (x)| dx.

The space Lexp(Rn) consists of all measurable functions f such that

& f &Lexp=sup
t>0

f **(t)
1+log+(1�t)

<+�. (1)
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Since

(af )**=|a| f **

and

( f +g)**� f **+ g**

the quantity in (1) is a norm and therefore Lexp(Rn) a Banach space. See
[1, Chap. 4, Sect. 6] for a proof of this and more properties about
Lexp(Rn).

Our main result is the following.

Theorem 1.

(i) Let 0< p<r<� and :�n(1�p&1�r). Then the following imbed-
ding holds:

4:
Lp, �(Rn)/4:&n(1�p&1�r)

Lr, � (Rn).

(ii) Let 0< p<� and :=n�p. Then the following imbedding holds:

4:
Lp, �(Rn)/Lexp(Rn).

(iii) Let 0< p<� and :>n�p. Then the following imbedding holds:

4:
Lp, �(Rn)/4:&n�p(Rn).

We point out that, since 4:
Lp(Rn)/4:

Lp, �(Rn), part (iii) of the above
theorem improves the analogous result known for the L p metric (see [3,
Sect. 6.3]).

Remark. Assume 0< p<� and 0<:<n�p. By part (i) of the above
theorem there exists a constant C>0 such that

& f &Lp�(1&:p�n), ��C {& f &Lp, �+sup
$>0

|k( f, $)Lp, �

$: = . (2)

However, the L p, � norm of f can be dropped from the above inequality by
means of a dilation argument. Let f=(x)= f (x�=) and note that & f=&Lp, �=
=n�p & f &Lp, � and that |k( f= , $)Lp, �==n�p|k( f, $�)Lp, � . Then, applying (2) to
f= yields

& f &Lp�(1&:p�n), ��C {=: & f &Lp, �+sup
$>0

|k( f, $)Lp, �

$: = .
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Letting = � 0 gives, for every f # L p, �(Rn),

& f &Lp�(1&:p�n), ��C sup
$>0

|k( f, $)Lp, �

$: .

The sharpness of the embeddings of Theorem 1 follows by general con-
sideration on the behavior of the norms under dilations and arguments
similar to that used in the above remark. In the next theorem we present
a more precise result which is based on the explicit computation of the
moduli of smoothness of functions that behave locally like |x|:.

Theorem 2. Let 0< p<�. For any :>0 there exists a function
f # 4:

Lp, �(Rn) such that

(i) for any r # [ p, p�(1&:p�n)], when 0<:<n�p, or any r # [ p, �),
when :�n�p, one has f # 4:&n(1�p&1�r)

Lp, � (Rn) (by Theorem 1) and

|[:&n(1�p&1�r)]+1( f, $)Lr, ��cr$:&n(1�p&1�r)

for a suitable constant cr and any $ sufficiently small ;
(ii) when :=n�p one has f # Lexp(Rn) (by Theorem 1) and f is

unbounded ;

(iii) when :>n�p one has f # 4:&n�p(Rn) (by Theorem 1) and

|[:&n�p]+1( f, $)�c $:&n�p.

The plan of the paper is the following. In the first section we state and
prove a few preliminary results about the spaces 4:

Lp, �(Rn). Sections 2 and
3 are devoted respectively to the proof of Theorem 1 and Theorem 2. In the
last section we show that our methods also apply to a more general con-
text. We consider Lipschitz spaces of functions defined on a measure space
and we present a suitable imbedding theorem.

1. PRELIMINARY RESULTS

It is not difficult to see that the quantity

& f &Lp, �=[sup
*>0

* p |[x # Rn : | f (x)|>*] |]1�p

is not a norm for the weak-L p spaces since the triangular inequality may
fail also for p�1. Even if it can be proved that for 1< p<� there exists
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an equivalent norm which endows a Banach space structure (see, e.g.,
[4, Chap. V]) in what follows we shall assume in full generality 0< p<�
and we need a substitute for the triangular inequality. The next lemma
provides the required substitute.

Lemma 3. Let a, b>0, a+b=1, and 0< p<�. Then for every
f, g # L p, �(Rn)

& f + g& p
Lp, ��

1
a p & f & p

Lp, �+
1
b p &g& p

Lp, � . (3)

Proof. Since

[x : | f (x)+ g(x)|>*]�[x : | f (x)|>a*] _ [x : | g(x)|>b*]

a straightforward computation gives the desired result. K

Using (3) it is not difficult to see that if k and r are integral and k<r,
then there exists a constant M>0 such that for every f # L p, �(Rn)

|r( f, $)Lp, ��M|k( f, $)Lp, � .

The next proposition shows that, under suitable conditions, the above
inequality can be reversed. Our proof uses an adapted version of the
Marchaud inequality and follows the lines of Theorem 8.1 in [2, Chap. 2].

Proposition 4. Let :<k<r with k and r integers. Then there exists a
constant C>0 such that if f # L p, �(Rn) satisfies

|r( f, $)Lp, ��A$: (4)

then

|k( f, $)Lp, ��CA$:.

Proof. We suppose first r=k+1. The general case follows iterating
from this. Since

Q(x)=
(x&1)k&2&k(x2&1)k

(x&1)k+1

is a polynomial of degree k&1, replacing x with the translation operator
Th defined by Th f (x)= f (x+h) we obtain

(Th&I )k=2&k(T2h&I )k+Q(Th)(Th&I )k+1
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that can be written as

2k
h f =2&k 2k

2h f +Q(Th) 2k+1
h f

and therefore by (3)

&2k
h f & p

Lp, ��
1
a p 2&pk &2k

2h f & p
Lp, �+

1
b p &Q(Th) 2k+1

h f & p
Lp, � .

Using again (3) and the fact that the translation operator is bounded on
L p, �(Rn) we obtain

&Q(Th) 2k+1
h f &Lp, ��M &2k+1

h f &Lp, �

so that

&2k
h f & p

Lp, ��
1
a p 2&pk &2k

2h f & p
Lp, �+

M p

b p [|k+1( f, |h| )Lp, �] p. (5)

We repeatedly apply (5) to obtain, for every m>0,

&2k
h f & p

Lp, �

�
M p

b p :
m

j=0

2& jpk

a jp [|k+1( f, 2 j |h| )Lp, �] p+
2&pk(m+1)

a p(m+1) &2k
2m+1h f & p

Lp, �

�
M p

b p :
m

j=0

2& jpk

a jp [|k+1( f, 2 j|h| )Lp, �] p+const
2&pk(m+1)

a p(m+1) & f & p
Lp, � .

Assuming 2&k<a<1 and letting m � � we have

&2k
h f & p

Lp, ��
M p

b p :
�

j=0

2& jpk

a jp [|k+1( f, 2 j |h| )Lp, �] p

so that

[|k( f, $)Lp, �] p�
M p

b p :
�

j=0

2& jpk

a jp [|k+1( f, 2 j$)Lp, �] p.

The assumption (4) yields

[|k( f, $)Lp, �] p�A p M p

b p :
�

j=0

2& jpk

a jp (2 j$):p=A p $:p M p

b p :
�

j=0

(2 pk&:pa p)& j.
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Since :<k we can choose a such that 2:&k<a<1. In this way the last
series converges and therefore

|k( f, $)Lp, ��const A$:. K

Corollary 5. Let 0<:<; and 0< p<�. Then we have the imbedding

4;
Lp, �(Rn)�4:

Lp, �(Rn).

Proof. Let k=[:]+1 and s=[;]+1. Elementary arguments show
that if f # 4;

Lp, �(Rn) then

|s( f, $)Lp, ��const & f &4;
L p, � $:.

If k=s this gives

& f &4:
L p, ��const & f &4;

L p, � .

In the general case we can use Proposition 4 to obtain

|k( f, $)Lp, ��const & f &4;
L p, � $:.

and therefore the desired result. K

2. PROOF OF THEOREM 1

We sketch here the main idea of the proof of Theorem 1. Suppose
n=1, :<1, and f # 4:

Lp, �(R) with & f &4:
L p, ��1. Let A*=[x : | f (x)|>*].

Then

[x : |2h f (x)|>*�2]$[x : | f (x+h)|>*] & [x : | f (x)|�*�2].

that is,

[x : |2h f (x)|>*�2]$(A*&h) & (A*�2)c.

Suppose now that A*�2 and A* are intervals. Since A* �A*�2 taking
h=|A*�2 | we have (A*&h) & (A*�2)=< and therefore

(A*&h) & (A*�2)c=(A*&h).
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It follows that

|A* |=|A*&h|�|[x : |2h f (x)|>*�2]|�(*�2)&p &2h f & p
Lp, �

�(*�2)&p |h| p:=(*�2)&p |A*�2 | p:. (6)

Assuming :p<1 and iterating the above relation between |A* | and |A*�2 |
we obtain

|A2 j |�const 2& jp�(1&:p)

and therefore that f # L p�(1&:p), �(R).
The plan of the proof is as follows.
In Lemma 7 we establish a refined version of the recurrence relation (6).

The main problem in doing this is due to the fact that in the general situa-
tion the sets A* are not intervals and therefore they cannot be disjoint by
means of translations. However, in Lemma 6 we show that it is possible to
disjoin them up to a set of small measure.

In Lemma 8 we prove the imbedding

4:
Lp, �(Rn)/L p�(1&:p�n), �(Rn) (7)

and in Lemma 10 the imbedding

4:
Lp, �(Rn)/4:&n(1�p&1�r)

Lr, � (Rn). (8)

To avoid the use of high order difference operators, (7) is proved only
for :<1 and (8) for n(1�p&1�r)<min(:, 1). The proof of part (i) of
Theorem 1 then follows applying repeatedly the imbedding (8).

Part (ii) of the theorem follows iterating directly the relation obtained in
Lemma 7.

Part (iii) is similar to part (i). We first prove the imbedding when
:<1 (see Lemma 11) and then we extend the embedding to the general
situation.

Lemma 6. Let F and G be measurable subsets of Rn and let 1n denote
the volume of the unit ball in Rn. Then for every =>0 there exists h # Rn such
that

|h|�\ |G|
=1n+

1�n

(9)

and

|(F+h) & G|�= |F |. (10)
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Proof. Assume |F |>0, otherwise (10) is trivial and let g(h)=
|(F+h) & G| and E==[h # Rn : g(h)>= |F |]. Since g is continuous E= is
measurable and

= |F | |E= |<|
E=

g(h) dh�|
Rn

|(F+h) & G| dh

=|
Rn |Rn

/F (x&h) /G(x) dx dh=|F | |G|

so that

|E= |<
|G|
=

.

Let B=[x # Rn : |x|�(|G|�(=1n))1�n]. Since |B|=|G|�= it follows there
exists h # B satisfying (10). K

Lemma 7. Let f # L p, �(Rn) and suppose there exist :>0 and M>0
such that

&2h f &Lp, ��M |h|:

for every h # Rn. Then there exists a constant C=C(:, p, n) such that for
every *, +>0

|[x : | f (x)|>*++] |�
M p

* p |[x : | f (x)|>+]|:p�n. (11)

Proof. Observe that

[x : |2h f (x)|>*]$[x : | f (x+h)|>*++] & [x : | f (x)|�+],

hence setting

A*=[x # Rn : | f (x)|>*]

and

B*(h)=[x # Rn : |2h f (x)|>*]

we have the relation

B*(h)$(A*++&h) & (A+)c. (12)
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We choose h # Rn in the following way. For fixed *, +>0 we apply
Lemma 6 with == 1

2 to the sets A*++ and A+ to ensure there exists h,
|h|<(2 |A+ |�1n)1�n such that

|(A*++&h) & A+ |� 1
2 |A*++ |. (13)

With this choice of h, we have

|B*(h)|�|(A*++&h) & (A+)c|=|A*++ |&|(A*++&h) & (A+)|

�|A*++ |& 1
2 |A*++ |= 1

2 |A*++ |.

So that

* p 1
2 |A*++ |�* p |B*(h)|�&2h f & p

Lp, ��M p |h|:p�M p(2 |A+ |�1n):p�n

(14)

and therefore

|A*++ |�const
M p

* p |A+ |:p�n. K

Lemma 8. Let 0< p<� and 0<:<min(n�p, 1). Then the following
imbedding holds:

4:
Lp, �(Rn)/L p�(1&:p�n), �(Rn).

Proof. Let f # 4:
Lp, �(Rn), so that

&2h f &Lp, ��& f &4 :
Lp, � |h|:. (15)

Setting

A*=[x : | f (x)|>*]

and applying Lemma 7 we obtain

|A*++ |�C & f & p
4:

Lp, �

|A+ |:p�n

* p .

We can assume with no loss of generality

& f & p
4:

Lp, �=1�C (16)
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so that, taking *=+,

|A2* |�
|A* | :p�n

* p .

Iterating the above inequality yields

|A2 j |�
1

2 p(( j&1)+( j&2)#+( j&3)#2+ } } } +# j&2)
|A1 | # j

,

where #=:p�n. Since #{1

( j&1)+( j&2)#+( j&3)#2+ } } } +# j&2=
# j&1

(#&1)2+
j

1&#
(17)

and

|A2 j |�2&p((# j&1)�(#&1)2+ j�(1&#)) |A1 | # j

�D(C, p, #) max(1, |A1 | ) 2& j( p�(1&#)).

Moreover the assumption (16) implies |A1 |�const so that

& f &Lp�(1&:p�n), ��const. K

Lemma 9. Let 0< p<�, 0<:<;, and f # 4;
Lp, �(Rn). For every h # Rn

set gh=|h| :&; 2[;]+1
h f. Then there exists a constant c>0, independent of

h, such that

&gh&4 :
L p, ��c & f &4;

L p, � .

Proof. Observe that since f # 4;
Lp, �(Rn), by Corollary 5, f # 4;&:

Lp, �(Rn)
and therefore

&gh&Lp, �=|h|:&; &2[;]+1
h f (x)&Lp, ��const |h|:&; &2[;&:]+1

h f (x)&Lp, �

�const & f &4;&:
L p, ��const & f &4;

L p, � .

Moreover for &2[;]+1
u gh&Lp, � we have the estimates

&2[;]+1
u gh&Lp, �=|h|:&; &2[;]+1

u 2[;]+1
h f &Lp, �

�const |h|:&; &2[;]+1
h f &Lp, �

�const |h|:&; |h|; & f &4 ;
L p, �

183IMBEDDING THEOREMS FOR LIPSCHITZ SPACES



File: DISTL2 318312 . By:AK . Date:02:07:98 . Time:13:16 LOP8M. V8.B. Page 01:01
Codes: 3588 Signs: 1072 . Length: 45 pic 0 pts, 190 mm

and

&2[;]+1
u gh&Lp, �=|h|:&; &2[;]+1

u 2[;]+1
h f &Lp, �

�const |h|:&; &2[;]+1
h f &Lp, �

�const |h|:&; |u|; & f &4 ;
L p, �

Using the first estimate when |u|�|h| and the second when |u|<|h| we
obtain

sup
$>0

|[;]+1(gh , $)Lp, �

$: �const & f &4;
L p, � .

If [;]=[:] the above inequality gives

&gh&4:
L p, ��const & f &4;

L p, � . (18)

Otherwise we can apply Proposition 4 to obtain an estimate for
|[:]+1(gh , $) and therefore (18). K

Lemma 10. Let 0< p<r<�, and n(1�p&1�r)<min(:, 1). Then the
following imbedding holds:

4:
Lp, �(Rn)/4:&n(1�p&1�r)

Lr, � (Rn).

Proof. Let f # 4:
Lp, �(Rn), k=[:]+1, and #=n(1�p&1�r). We fix

h # Rn and set gh(x)=|h| #&: 2k
h f (x). By Lemma 9 we have gh # 4#

Lp, �(Rn)
and &gh&4 #

Lp, ��const & f &4 :
L p, � .

Since, by Lemma 8, 4#
Lp, �(Rn)/Lr, �(Rn) we have

&gh&Lr, ��const &gh&4#
L p, ��const & f &4 :

L p, � .

It follows that

&2k
h f &Lr, ��const & f &4:

L p, � |h| :&#

and applying Proposition 4 (only in the case [:&#]<[:]) we obtain

sup
$>0

|[:&#]+1( f, $)Lr, �

$:&# �const & f &4:
L p, � .

To conclude the proof we only need an estimate of & f &Lr, � in terms of
& f &4 :

Lp, � . This follows by Lemma 8 and Corollary 5. Indeed,

& f &Lr, ��const & f &4#
L p, ��const & f &4:

L p, � . K
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Proof of Theorem 1. (i) Let #=n(1�p&1�r). We have already proved
the imbedding when #<1 in Lemma 10, so we can assume #�1. Let
k=[#]+1, #j=#( j�k), and rj such that #j=n(1�p&1�r j).

Applying k times Lemma 10 we obtain the following chain of imbeddings

4:
Lp, �(Rn)/4:&#1

Lr1, �(Rn)/4:&#2
Lr2 , � / } } } /4:&#k

Lrk , �(Rn)

=4:&n(1�p&1�r)
Lr, � (Rn). K

Proof of Theorem 1. (ii) We assume, with no loss of generality,
& f &4

n�p
Lp, �

=1. Moreover observe that we can also assume p>n otherwise
we can apply part (i) of the theorem to ensure that f # 4n�r

Lr, �(Rn) for some
r>n. With this assumption only first order differences are involved, so that

&2h f &Lp, ��|h|n�p

and, setting

A*=[x : | f (x)|>*],

by Lemma 7 we get

|A*++ |�
C
* p |A+ |.

Choosing * sufficiently large we obtain

|A*++ |�
1
e

|A+ |.

and therefore

|Ak* |�e&k+1 |A* |�const e&k.

From this it follows easily that

f *(t)�{
! log

c
t

!

if t<
c
e

if t�
c
e

for suitable positive constants c and !. Hence & f &Lexp�const. K
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Lemma 11. Assume 0< p<� and n�p<:<1. Then the following
embedding holds:

4:
Lp, �(Rn)/4:&n�p(Rn).

Proof. Let f # 4:
Lp, �(Rn) for some :>n�p, fix h # Rn, and let fh=2h , f.

Then for every u # Rn

&2u fh&Lp, ��M |u|: & f &4:
L p, �

and

& fh&Lp, ��K |h|: & f &4:
L p, � (19)

for suitable constants M and K. Setting F (*)=|[x : | fh(x)|>*]| by
Lemma 7 we have

F (*++)�C
M p & f & p

4 :
L p, �

* p F (+):p�n.

We assume, with no loss of generality,

CM p & f & p
4 :

L p, ��1 and K & f &4:
L p, ��1 (20)

so that

F (*++)�
F (+)#

* p

with #=:p�n>1. Then, iterating the above inequality, we obtain

F (u+u2&1+ } } } +u2&k)�
F (u)#k

u p[1+#+ } } } +#k&1]2&p[#k&1+2#k&2+ } } } +k#0]

and, by (17),

F (u+u2&1+ } } } +u2&k

�u&p(#k&1)�(#&1)2 p[(#k+1&1)�(#&1)2&(k+1)�(#&1)] F (u)#k

�u p�(#&1) _2 p#�(#&1)2 F (u)
u p�(#&1) &#k

.

Using (19) and (20) we have

F (u)�u&p & fh & p
Lp, ��u&p |h| :p
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so that

F (u+u2&1+ } } } +u2&k)�u p�(#&1)[2 p#�(#&1)2u&p#�(#&1) |h|:p]#k
.

Taking u=c |h|:&n�p with c sufficiently large we obtain

F (u+u2&1+ } } } +u2&k)�u p�(#&1)[ 1
2]#k

.

Letting k � � and observing that F is positive and not increasing we get

F (2c |h|:&n�p)=0,

that is, & fh&L�=&2h f &L��2c |h|:&n�p. A standard approximation
argument shows that f is continuous and therefore that

f # 4:&n�p(Rn). K

Proof of Theorem 1. (iii). The case :<1 is included in the above
lemma; we consider the case :�1. Let now f # 4:

Lp, �(Rn) with :>n�p and
observe that, as in the proof of (ii), we can assume n�p<1. To avoid the
use of high order differences we reduce ourselves to the case :<1. To do
this we fix =>0 such that n�p+=<1 and we consider

gh=|h| n�p+=&: 2[:]+1
h f.

By Lemma 9, gh # 4n�p+=
Lp, � (Rn) and by Lemma 11, gh # 4=(Rn) with

&gh&4=�const & f &4 :
Lp, � .

Then

&2[:]+2
h &L�=&2h gh&L� |h|:&n�p&=�&2gh &4= |h| :&n�p

�const & f &4:
L p, � |h|:&n�p. K

3. PROOF OF THEOREM 2

To prove Theorem 2 we consider the family of functions

._(x)={ |x|_ log( |x| )
|x| _

if _ is a non-negative even integer,
otherwise.

Since these functions are essentially homogeneous of degree _ the study of
their regularity is particularly simple. Unfortunately ._ has not the right
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behavior at infinity. To avoid this problem we fix a vector v # Rn and we
consider 2k

v ._ which, for suitable values of k, shows a better behavior at
infinity.

One might ask why the definition of ._ changes when _ is a non-
negative even integer. The reason appears clear if one observes that in such
a case 2k

v |x|_#0 when k>_.
Fix now 0< p<�, :�0, k=[:]+1, and let f =2k

v .:&n�p . In the next
two lemmas we compute explicitly the moduli of smoothness of f. This will
prove Theorem 2.

Lemma 12. Let f as above and p�r< p�(1&:p�n) if :<n�p or r� p if
:�n�p. Then f # 4:&n(1�p&1�r)

Lr, � (Rn). Moreover

|[:&n(1�p&1�r)]+1( f, $)Lr, ��c $:&n(1�p&1�r)

for $ sufficiently small.

Proof. It is not difficult too see that | f (x)|�const |x|&n�p for large
values of |x|. This implies f # Lr, �(Rn). To estimate the moduli of smooth-
ness of f let l=[:&n(1�p&1�r)]+1, ;=:&n�p, and observe that

2l
h .;(x)=|h|; 2 l

h�|h| .; \ x
|h|+ . (21)

From this we obtain

&2 l
h f &r

r, �

=&2k
v 2 l

h .;& r
r, �

=sup
*>0

*r } {x : } :
k

j=0

(&1) j+k \k
j+ 2 l

h .;(x+ jv)}>*= }
=sup

*>0

*r } {x : |h|; } :
k

j=0

(&1) j+k \k
j+ 2 l

h�|h| .; \x+ jv
|h| +}>*= }

=sup
*>0

*r } {x : } :
k

j=0

(&1) j+k \k
j+ 2 l

h�|h| .; \ x
|h|

+
jv
|h|+}>* |h| &;= }

=sup
*>0

*r |h|n } {x : } :
k

j=0

(&1) j+k \k
j+ 2 l

h�|h| .; \x+
jv
|h|+}>* |h|&;= }

=|h|n+;r sup
*>0

*r } {x : } :
k

j=0

(&1) j+k \k
j+ 2 l

h�|h| .; \x+
jv
|h|+}>*= } .
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Hence

&2 l
h f &Lr,��const |h| ;+n�r &2k

h�|h| .;&Lr,��const |h| :&n(1�p&1�r).

To estimate &2 l
h f &Lr,� from below fix a neighborhood of the origin U and

observe that in U the functions 2 l
h�|h| .;(x+ jv�|h| ) with j=1, ..., k are

arbitrary small for small values of |h|. It follows that

&2 l
h f &r

r,�

=|h|n+;r sup
*>0

*r } {x : } :
k

j=0

(&1) j+k \k
j+ 2 l

h�|h| .; \x+
jv
|h|+}>*= }

�|h|n+;r sup
*>0

*r } {x # U : } :
k

j=0

(&1) j+k \k
j+ 2 l

h�|h| .; \x+
jv
|h|+}>*= }

�|h|n+;r | [x # U : |2 l
h�|h| .;(x)|>1�2]|�const |h| n+;r.

So that

&2 l
h f &r

r, ��const |h|:&n(1�p&1�r). K

Lemma 13. Let 0< p<�, :>n�p, and assume f as in the previous
lemma. Then f # 4:&n�p(Rn). Moreover

|[:&n�p]+1( f, $)�c$:&n�p.

We omit the proof since it is similar to that of the previous lemma.

Proof of Theorem 2. Part (i) is proved in Lemma 12. As for part (ii)
observe that in this case f =2k

v log |x|. By Lemma 12, f # 4:
p, �(Rn) and by

Theorem 1, f # Lexp. On the other hand f is clearly unbounded. Part (iii) is
proved in Lemma 13.

4. AN IMBEDDING THEOREM FOR GENERALIZED
LIPSCHITZ SPACES

Let (X, +) be a measure space equipped with a family of measure
preserving transformation T=[T_, t]_ # 7, t # R+

. Every transformation
T_, t # T can be seen as a translation over X of a quantity t in direction _.
Following this point of view we define the first order difference operator

2_, t f (x)= f (T_, t x)& f (x)
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and, for 0<:<1 and 0< p<�, the Lipschitz space 4:
Lp, �(X, T) as the

space of all measurable functions f on X such that

& f &4:
L p, �=& f &Lp, �+sup

_, t

&2_, t f &Lp, �

t:

is finite.
In the proof of Theorem 1 the fact that arbitrary sets can be disjoint up

to a set of arbitrary small measure by means of translation plays a relevant
role. This property is proved in Lemma 6. In the present situation we
assume it. More precisely we assume there exist two constants c, d>0 with
the following property: for every couple of measurable subsets F, G of X
and for every =>0 there exist _ # 7 and t<c(u(G)�=)1�d such that

+(G & T_, tF )�=+(F ).

Observe that now d plays the role of the dimension. Under the above
assumption we can prove the following.

Theorem 14. Let 0< p<�, and 0<:<min(1, d�p). Then the following
imbedding holds:

4:
Lp, �(X, T)/L p�(1&:p�d), �(X).

Proof. First observe that under the assumptions on T it is possible to
prove a version of Lemma 7 adapted to the present situation. The proof of
the theorem now follows the same line of the proof of Lemma 8. We omit
the details.
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